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Abstract This paper examines how grade incentives affect student learning across
a variety of courses at two universities, using for identification the discrete rewards
offered by the standard A–F letter-grade system. We develop and test five predictions
about the provision of study effort and the distribution of numerical course averages
in the presence of the thresholds that separate these discrete rewards. Surprisingly, all
are rejected in our data. There is no evidence that exam performance is improved for
those students that stand to gain the most from additional study.
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1 Introduction

Effective learning requires initiative by students as well as teachers. Yet, while perfor-
mance incentives for teachers have received considerable attention from economists
(and the general public), less attention has been paid to motivating students, and most
recent work in this vein has focused on financial incentives (Angrist et al. 2009; Jackson
2010; Fryer 2010), which are rare in practice. Few studies have examined the most
fundamental incentive offered to students, grades, despite their prevalence, impor-
tance, and interesting economic properties. With a thorough theoretical and empirical
analysis of the incentive properties of grades, this paper helps fill that gap.
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1564 D. Grant, W. B. Green

A brief sampling of the literature illustrates the multifaceted value of such an inquiry.
Farkas and Hotchkiss (1989) consider grade incentives to be one component of com-
prehensive educational reform, in which states raise educational standards and schools
grade more rigorously to encourage students to meet those standards. Bonesrønning
(2004), in contrast, treats the strength of grade incentives as an identifiable, mutable
determinant of teacher effectiveness. Oettinger (2002) focuses on the student response
to these non-monetary incentives, while Babcock (2010) adopts a broad historical per-
spective, asking whether collegiate grade inflation helps explain the downward trend
in study time. At the level of the student, teacher, school, and system, it is useful to
know how grade incentives affect student learning.

Our empirical methodology relies on a curious feature of the typical American
grading system: the presence of thresholds, which divide grades into discrete units of
A, B, C, D, and F. (The plus/minus grading system adopted by some universities does
not apply in our data.) In the neighborhood of these thresholds the expected marginal
benefit of increased study effort is highly non-monotonic. In consequence, several
detailed predictions about effort provision and the distribution of final course aver-
ages can be generated. Because these predictions are across students within the same
class taught by the same instructor, they obviate the need to control for the instructor’s
teaching methods, whose absence in cross-teacher analyses is a possible source of
bias.

Using simple non-parametric methods, we test these predictions and infer the effect
of grade incentives on learning at all four grade thresholds across the full distribution of
student motivation for several college courses at two universities. The results are con-
sistent throughout: stronger incentives are not associated with improved performance.
Because studies cited below indicate that study effort is associated with improved exam
performance, this suggests that grades are not effective motivators on the margin, at
least for tests in college classes at universities comparable to those studied here.

2 Grades and incentives: three perspectives

The natural statistical approach for analyzing grades’ incentive effects is to assume
the null that there are no such effects, and determine whether it can be rejected by
the data. While this null runs counter to standard economic theory, it should not be
considered a foil, destined to fail. Its plausibility is suggested by two alternate per-
spectives on the effects of grade incentives: the historical, which inquires whether the
letter-grade system was adopted in order to motivate students, and the psychological,
which identifies those motivators that appear to have the strongest effects on learning.

2.1 Historical perspective

Educational assessment originated toward the end of the medieval period, in order to
group students within schools on the basis of mastery. It spread across Europe through-
out the Renaissance, as the state tried to improve the quality of its civil servants, who
were increasingly selected on the basis of merit instead of social class (Wilbrink 1997).

123



Grades as incentives 1565

In America, the first defined scale for differentiating students appeared at Yale
in 1785, using four tiers, as in English universities. In 1813, Yale moved to a four-
point numerical scale that included both whole numbers and decimals, while Harvard
contemporaneously adopted a twenty-point scale. Throughout the remainder of the
nineteenth century American universities experimented with a variety of marking sys-
tems, including written reports, adjectives such as “good” and “exemplary,” and a
variety of numerical scales, often quite detailed (Smallwood 1935).

Modernization of the curriculum toward the end of the nineteenth century seems to
have brought with it the first letter grades: a five-tiered, A through E system instituted
at Harvard in the 1880s. This system was explicitly intended to diminish motivation:

The Faculty last year did away with the minute percentage system of marking, and
substituted a classification of the students in each course of study in five groups,
the lowest of which includes those who have failed in the course. It is hoped
that this grouping system will afford sufficient criteria for the judicious award of
scholarships, honorable mention, and the grade of the Bachelor’s degree, while
it diminishes the competition for marks and the importance attached by students
to College rank in comparison with the remoter objects of faithful work (Annual
Report of the President of Harvard 1885, p. 9, quoted in Smallwood 1935,
p. 51).

As Harvard’s new curriculum and teaching methods spread throughout American
higher education, so did its new grading system.1

A similar shift occurred in American public schools during this period. As enroll-
ment and professionalism increased dramatically, assessment initially evolved away
from written narratives toward percentages on examinations in different subject areas.
Then Wisconsin researchers Daniel Starch and Edward Charles Eliot (1912, 1913)
challenged the reliability of percentages as indicators of achievement, showing that
teachers assigned a wide variety of grades to identical papers, with percentage scores
ranging at least thirty-four points in English and as much as sixty-seven points in
math. In response, schools moved away from percentage scores to fewer, larger cate-
gories, such as the “Excellent,” “Good,” “Average,” “Poor,” and “Failing” system that
presaged today’s A–F scale.

In summary, grading systems evolved with the educational system, partly in
response to demands for better information about student performance, but were not
explicitly designed to motivate students. This holds in particular for the introduction
of thresholds, used first to group students into homogenous classes and expedite cost-
effective instruction, then adopted by Harvard to weaken “competition for marks,”
and finally employed by the followers of Starch and Eliot to mask the disparity in
instructors’ grading standards.

1 Grant (2010) shows that, compared to a continuous incentive such as a numerical grading system, a thresh-
old can increase or decrease average effort, depending on its placement. Even when effort is diminished on
average, however, it is increased for those students on the border between two letter grades. The marginal
rewards for improved performance are reduced for infra-marginal students and enhanced for marginal, or
borderline, students.
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2.2 Psychological perspective

Research in educational psychology, summarized in Stipek (1996) and Elliot and
Zahn (2008) and applied to economics in Hadsell (2010), also casts doubt on grades’
motivational efficacy.

This literature initially emphasized the Skinnerian model, in which behavior
responded to “extrinsic” reinforcements, such as trinkets, money, or grades, and in
which these reinforcements could be adjusted in an almost Keynesian way to bring
about desired outcomes. But over time this model has been de-emphasized in favor
of a broader model that also allows internal, or “intrinsic,” motivations, and which
mediates the effect of external reinforcements through cognitions that influence the
way in which students respond to incentives and their objectives in doing so.

This research concludes that extrinsic motivation and intrinsic motivation are sub-
stitutes: students have an intrinsic “achievement motive” that is weakened by the use
of incentives. This diminishes the potency of extrinsic rewards. Furthermore, extrinsic
incentives’ effects are influenced by students’ perceptions of competence and self-effi-
cacy. If these are poor, students adopt a “performance-avoidance” goal—essentially
a maximin objective that tries to moderate bad outcomes rather than strive for good
ones. When this happens, incentives’ effects are yet further diminished.

These findings are buttressed by a broader literature in psychology and, more
recently, behavioral economics (Amabile 1983; Vendantam 2008; Ariely et al. 2009;
Fryer 2010; Grove and Hadsell 2011, in education) on the value of extrinsic incentives.
The general finding is that they improve performance in “algorithmic,” or repetitious,
tasks but are less effective or even counterproductive at “heuristic” tasks that require
creativity, concentration, or intuition. Because learning has generally been classified
as heuristic, this too suggests that extrinsic grade incentives may not be effective
motivators.

2.3 Economic perspective

As it stands, though, few studies directly explore the effects of grade incentives on stu-
dent achievement. In the education literature grades are more commonly analyzed in
the context of assessment, not incentives (such as in the journal Studies in Educational
Evaluation); when grade incentives are discussed, it is usually as an inducement for stu-
dents to participate in the educational intervention that is the focus of the study. These
incentives often achieve their purpose (for example, Grove and Wasserman 2006), but
if participation in these interventions is algorithmic, while learning is essentially heu-
ristic, then this success need not mean that grades motivate students to learn on their
own. This research leaves that question, the focus of this paper, largely unaddressed.

Thus, most studies of grades’ incentive effects have been done by economists.
Most relate cross-instructor variation in grading standards to study time or learning
outcomes (see the review by Bishop 2006; Betts and Grogger 2003; Bonesrønning
1999, 2004; Figlio and Lucas 2004; Grant 2007; Iacus and Porro 2008; Merva 2003).
More difficult instructors do have better learning outcomes, but this might have more
to do with teaching methods, which are not controlled for, than incentives. While
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no study directly relates teachers’ grading standards to their pedagogical skill, it is
generally accepted that high expectations for achievement are an important component
of teacher effectiveness. If such expectations are associated with high grading stan-
dards and with pedagogical skill, the effect of such standards on achievement is biased
upward in studies that do not account for the effectiveness of the teacher’s instructional
methods. The same concern applies, to a smaller degree, to Babcock (2010), which
relies on within-teacher, cross-class variation, and finds that higher grading standards
increase student study time.

Because pedagogical skill is difficult to measure, the only practical way to fully
address this concern is to identify incentives’ effects using within-instructor, within-
class variation. This is achieved by Oettinger (2002), who explores how grade thresh-
olds affect final exam performance for college students, as we do. He concludes that
they matter. Oettinger’s study design is similar to ours, though our theory places more
emphasis on uncertainty and our analytical approach is somewhat less structured; the
types of students studied may also differ. Below we compare Oettinger’s estimates to
ours, and argue there is less dissonance between them than appearances suggest.

In summary, most evidence supporting the effectiveness of grade incentives is
potentially subject to omitted variable bias. Furthermore, the historical record and
the psychology literature suggest these incentives may, in fact, be ineffectual. This
null hypothesis is a legitimate possibility.

3 The behavioral effects of grade thresholds

Many courses above the elementary grades assess performance numerically, by taking
an average of scores on tests, homework, quizzes, etc., and then use a grading scale to
convert this “final average” into letter grades. This process has two noteworthy fea-
tures. First, measurement is imperfect: most tests only sample the information covered
in the course, so that the score on that test measures each student’s “true” knowledge
with error.2 Second, the grading scale converts a continuous measurement, the final
average, into a set of discrete rewards, letter grades of A, B, C, D, or F. If measure-
ment were perfect, the marginal benefit of improved performance would be nil until
one is about to cross the threshold, after which it is nil again. Since it is imperfect,
expected marginal benefits are continuous but non-monotonic, rising, then falling in
the neighborhood of the threshold.

These features facilitate hypothesis testing in this paper, which examines how grade
incentives affect final exam performance. Because individuals vary in their pre-exam
proximity to the numerical threshold separating one letter grade from another, the
expected returns to additional study effort also vary. As a result, we can generate
several predictions about how final exam performance varies with proximity to this
threshold, and concomitant predictions about how the density of final course averages

2 While this “sampling error” suffices to motivate the model used here, it is not the only source of uncer-
tainty in the returns to study effort captured by the model: the student may not perfectly anticipate the
effectiveness of study time, the content or difficulty level of the final exam, etc. As long as these expecta-
tions are reasonable, the model below, and predictions derived therein, will continue to hold. On the other
hand, there is evidence that collegiate business students overestimate their likely exam performance (Grimes
2002; Clayson 2005).
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Fig. 1 Analysis of the amount of study effort exerted, conditional on the pre-exam average

varies with proximity to the threshold. These predictions and their normative implica-
tions are formally developed for a general model of thresholds in the companion paper,
Grant (2010), which applies to a wide range of empirical phenomena, as discussed
therein. Here they are laid out with a simple graphical model, depicted in Figs. 1 and
2, and justified intuitively.3

This model permits some baseline level of study effort during the semester, but
assumes that study effort for the final exam is “strategically” determined, as a func-
tion of its marginal costs and its expected marginal benefits. The latter, the parabola
in Fig. 1, are centered around the threshold, reflecting the error in measuring per-
formance discussed above, which is assumed to be distributed symmetrically around
zero. Marginal costs, the upward sloping lines in the figure, are represented for five
students with different pre-exam averages, ranging from student A, a weak student
whose pre-exam average is far below the threshold, to student E, a strong student whose
pre-exam average is far above the threshold.4 Absent strategic study effort, each stu-
dent’s expected final course average is indicated on the horizontal axis. Expending
effort increases the student’s expected exam score, thus increasing their chances of

3 This model, which focuses on uncovering testable implications of threshold incentive effects, is neither
the most general model of study effort available (which would probably be Bishop 2006) nor appropriate
when grades are assigned on a curve (see Becker and Rosen 1992). Elements of the model presented here
are found in each of these papers, and in Oettinger (2002).
4 These marginal costs will include the value of time spent in alternative uses, possibly including studying
for other final exams. The more exams, the higher and flatter marginal costs will be. This will diminish
the time a student spends studying for exams in all classes, borderline and not, and the marginal returns to
study effort across classes will tend to be equalized. The difference in study effort between borderline and
non-borderline students within a class may also diminish, but is not guaranteed to do so.
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Fig. 2 Top pre-exam average—effort locus. Bottom pre-exam average—expected final exam score locus

getting the higher grade. When the vertical axis is measured in logs, this graphical
model closely resembles the formal model in the companion paper.

Student A is too far below the threshold to make additional study worthwhile: mar-
ginal costs never intersect expected marginal benefits. Even when they do intersect
there may be only a local maximum, as for student B, who resides just below the
extensive margin at which the total benefits of effort equal the total costs. For this
student, the accumulated surplus of marginal costs over marginal benefits, left of the
lower point of their intersection, just exceeds the accumulated surplus over marginal
benefits over marginal costs, between the lower and upper points of intersection. Thus,
optimal effort is still zero. This is no longer true to the right of the extensive margin,
between students B and E. Effort becomes positive, determined at the intersection of
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marginal costs and expected marginal benefits. Moving right from student B, effort
can initially rise and will eventually fall with the pre-exam average. Eventually, for
student E and beyond, it returns to zero.

Mapping out the study effort implied by this model as a function of the pre-exam
average yields the graph at the top of Fig. 2; the implied relation between the pre-exam
average and the expected final exam score is given at the bottom of Fig. 2. These graphs
illustrate three predictions of the model, each of which can be described heuristically.

1. Peak effort property:Students whose pre-exam averages are far below the thresh-
old dividing two letter grades put forth little effort; those near it put forth more;
those in between put forth the most. This property, which establishes the non-
monotonicity of effort, has been noted by several other researchers.

2. Sawtooth property:Effort rises more quickly than it falls; that is, in absolute
value, the slope of line BC in Fig. 2 (top) is greater than the slope of line CE.
Thus, the relation between the pre-exam average and final exam effort takes a
sawtooth shape.This follows both from the existence of the extensive margin, at
which effort increases discretely, and from the geometry of Fig. 1. (The point of
intersection responds more to increases in the pre-exam average when marginal
costs and expected marginal benefits are more similarly sloped, which occurs to
the left of point C.)

3. Stair step property:More able students have better expected outcomes than less
able students. The relation between the pre-exam average and the final average
always slopes upward, like the rounded stair step at the bottom of Fig. 2. Intui-
tively, as long as there is increasing marginal disutility of study effort, a higher
pre-exam average “endowment” will be “spent” partly on reduced study and partly
on increased chances of receiving the higher grade.

Study effort depends on the student’s proximity to the nearest grade threshold, in a
predictable, non-linear fashion. Across the full spectrum of course grades, this pattern
should be repeated at each threshold.

All of these predictions can be tested qualitatively, by re-creating Fig. 2 empirically
from data on students’ pre-exam averages, final exam scores, and post-exam final aver-
ages—that is, by forming non-parametric estimates of the relationships between these
variables—and seeing if they match the patterns described above. These estimates
will be precise if the data include many students, either from one very large class or
from several smaller sections of the same subject taught by the same instructor. We
adopt the latter approach, amalgamating ten or more such sections over a multi-year
period and estimating these relationships with a non-parametric regression, specified
below, that includes dummy variables to distinguish the different semesters in which
the instructor teaches the class. For some results, we go even further and pool all
instructors together, yielding more than 3,000 observations.

With this non-parametric regression we can also formally test for threshold incen-
tive effects. 5 These effects will be absent if students are only motivated intrinsically;

5 The methodology that ensues is an example of “measuring the affinity of parametric and nonparametric
models,” of which much as been written—see Pagan and Ullah (1999, Section 3.13), Yatchew (1998), or
the extensive application to thresholds in the companion paper.
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then they should approach the final exam as they have approached all the other tests. In
that case the relation between students’ final exam scores, F, and their pre-exam aver-
ages, P, should be adequately represented by a simple parametric “trend.” In practice
our trend is quadratic,6 yielding the following specification:

Fs,t = βPs + γ P2
s + δt + εs,t (1)

where s indexes students and t time (semester*year), and δ represents the afore-
mentioned semester*year dummy variables (whose presence makes a constant term
superfluous).

This is the null hypothesis. The alternative is that this simple parametric relation is
inadequate, because strategic effort generates systematic deviations of F from trend:

Fs,t = g (Ps) + δt + εs,t (2)

with g(P) a nonparametric function that conforms to the properties listed above. The
null hypothesis implies g(P) = β P + γ P2. Using a loess smoother in SAS procedure
GAM, we estimate this partially linear model and test the significance of this null.7

The estimates of expected performance, ĝ(P), and of the effort incentivized by the
threshold, ĝ(P) – β̂P- γ̂ P2, suffice to form graphs like Fig. 2.

Thus this empirical approach, in addition to being simple and nonrestrictive, is also
descriptive. The effect of any study effort motivated by grade incentives, measured as
the average percentage point improvement on the final exam, can be read right off the
graph. In the companion paper this method clearly identifies strong incentive effects,
adhering to the properties above, from a somewhat unusual threshold: the finish time
in an ultramarathon required to win a coveted medal.

Incentive effects can also be revealed in the distribution of final course averages.
Basic intuition and Fig. 2 generate a fourth testable prediction.

4. Bunching: The empirical density of final averages in a modest interval just above
the grade threshold should exceed that in an interval of equal size just below the
threshold.

This can be tested using “the caliper method” (explicated in Gerber and Malhotra
(2008); implemented in economics by Borghesi (2008), and others; and extended
below to transition rates), simply by calculating these empirical densities and testing
the null that they are equal.

A corollary of this property yields a final prediction.

6 The pre-exam average is also affected by random measurement error. That is, the earlier tests in the course
are also imperfect indicators of students’ “true” performance, which would be the ideal independent vari-
able. Thus, the pre-exam average suffers from errors-in-variables bias, which makes its coefficient smaller
than one. This bias need not be constant, however, because this error is smaller at high grades and larger
at low grades (as shown in the scatterplots in the Appendix). Thus, a slight convex shape is expected, and
appears for three of the five instructors in the data.
7 For the figures, the bandwidth is chosen to cleanly resolve the smallest feasible scale over which threshold
incentives might be expected to be observed, 2 percentage points in width. This bandwidth under smooths
somewhat compared to the bandwidth chosen using generalized cross validation, which is adopted for the
formal hypothesis tests in Table 1.
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5. Asymmetric transitions: Transitions between the pre-exam and post-exam course
averages should be asymmetric, with more individuals near the threshold moving
slightly up instead of slightly down.

Again these transitions can be measured empirically, and the null that the two transition
rates are equal easily tested.

The regression tests and the distributional tests are complementary, because they
embody different student expectations about the difficulty of the final exam. The
former implicitly assume that students expect the final exam to be no more or less
difficult than the tests that preceded it: perfect (though perhaps reasonable) myopia.
The latter implicitly assume that students know exactly how hard the final exam will
be: perfect foresight. Here, both methods yield the same conclusion.

4 Data

The data used in this analysis were generously provided by five university instructors
teaching four different courses, both upper and lower division, at two Texas universities
during various subsets of the years 1998–2007. The courses, Principles of Accounting,
Principles of Microeconomics, Business Statistics, and a “Business Analysis” course
combining elementary calculus and probability concepts, are all required for a bach-
elor’s degree in business at their respective universities. Summary details about the
courses, instructors, and grading policies are found in Table 1.

Typically, university grading systems are either norm-referenced or criterion-ref-
erenced. In the former students are evaluated relative to one another; thresholds still
separate letter grades, but are not specified in advance, and so cannot motivate students
much on the margin. In contrast, criterion-referenced grading sets absolute standards,
using the philosophy that grades should reflect mastery of specific course material.
In these systems, thresholds are expected to incentivize effort as previously outlined.
All instructors in our sample use criterion-referenced grading on the standard scale,
in which 90 % is an A, 80 % a B, 70 % a C, 60 % a D, and below 60 % an F. No
plus/minus grades are possible.

We drop all students whose course average, prior to taking the final exam, is less
than 50 %. These students are almost destined to fail the course. For all remaining
students, our data record all test scores and homework grades, along with the formula
used to compute each final course average, which is also given to students in advance
on the course syllabus. We can thus compute the student’s pre- and post-exam course
averages, as can the student herself. All instructors evaluated students, primarily or
wholly, on the basis of two to four midterm exams and a final examination that was,
except for one instructor, mandatory. (Homework counted for 10 % of Instructor 5’s
final average, less for the other instructors.) Generally the final exam was worth about
one-quarter of the final average. Most exams, including the final, consisted of multiple
choice questions, occasionally supplemented with short answer questions or problems
requiring simple calculations or graphing. No instructor tried to make the final more
difficult than the other tests. Three of the five, in fact, constructed their final exams
by modifying slightly, sometimes very slightly, questions asked on previous tests.
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For each instructor, exam difficulty varies modestly across semesters, with the semester
dummies in our regressions having a standard deviation of about 3 percentage points.

There is nothing atypical about these course characteristics; nor is there anything
atypical about the universities at which these courses were taught: Sam Houston State
University, a public, seventeen-thousand student,U.S. News third-tier regional univer-
sity; and the University of Texas at Arlington, a public, twenty-five thousand student,
U.S. News fourth-tier national university. Median incoming SAT scores at both schools
modestly exceed the national average of about 1,020; 6-year graduation rates, around
40 %, are typical for universities of this type. We do not claim that students in all
universities behave as these students do, only that these universities are not unrepre-
sentative of the higher education system in the United States.

The instructors in our data are all terminally qualified, currently possessing a century
of combined full-time teaching experience; in their first year in our sample each has at
least 4 years prior experience teaching that course. Course evaluations and adminis-
trators’ judgements suggest that these instructors typically are successful in teaching
these courses and that they set appropriate course expectations and grading standards.
Each instructor in our data teaches more than 650 students, so that both parametric
and nonparametric estimates of effort provision, as reflected in final exam scores, can
be obtained with reasonable precision. In fact, the standard errors on the empirical
results presented below are about 1 percentage point, so that improvements in final
exam performance of only 2 or 3 percentage points can be distinguished statistically.

5 Empirical results

We first present preliminary findings, in which the data for Instructors 1–4 are pooled.
We then discuss individual instructors’ results and present formal hypothesis tests.
(Results for Instructor 5 are presented separately in the next section, for reasons
explained there.)

5.1 Pooled results: distribution and transition

The top of Fig. 3 contains two frequency distributions of individual course averages,
in percent: before taking the final exam, and after. These are grouped into two point
intervals: 50.00–51.99, 52.00–53.99, etc. The distribution is approximately normal,
with a mean of 75 and a standard deviation exceeding ten: all four grade thresholds
are relevant. Threshold incentive effects, if they exist, should be revealed in a system-
atic bunching of post-exam final averages just above multiples of ten. This does not
happen: there is a little bunching above the B/C threshold, but none elsewhere. Many
students’ averages do change after taking the final exam, up or down, but these tend
to offset, so the pre- and post-exam distributions are similar.

These dynamics, and summary evidence on the bunching of final averages, are
presented in the transition matrix that comes next in Fig. 3. Each student is classi-
fied by the unit digit of their unrounded pre- and post-exam course average: 0 or 1
placing them in the bottom two points of the standard ten-point range, 2–7 placing
them in the middle six points of that range, and 8–9 placing them at the top. Pre- to
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TRANSITION MATRIX 

187 

(0.27) 

361 

(0.52) 

150 

(0.21)

698 

(0.203) 

346 

(0.17)

1380 

(0.67) 

349 

(0.17)

2073 

(0.604) 

154 

(0.23)

322 

(0.49) 

185 

(0.28) 

661 

(0.192) 

687

(0.200)

2063 

(0.601) 

684

(0.199)

3434 

(1.000) 

Fig. 3 Pooled results (Instructors 1–4). Top distribution of pre- and post-exam course averages. Middle
transition matrix. Bottom mean deviation of final exam score from trend
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Fig. 3 contiuned

post-exam transition probabilities, along with the total number of students falling in
each category, are presented in the interior of the matrix, with row and column totals,
and associated proportions, along the outside.

Three pieces of evidence about final exam study behavior are contained in this
transition matrix, all versions of the caliper test mentioned above. The first concerns
the proportion of students falling in each of the three classifications. Under random
placement of students, roughly 20 % should be at the bottom end, 60 % in the middle,
and 20 % at the top. If final exam study effort is strategically determined, however, this
should not be the case post-exam, with the underlined numbers in the matrix. Instead,
the bottom end of each range should have significantly more than 20 % of all students.
In fact, the 20–60–20 % distribution is replicated almost perfectly.

The second piece of evidence concerns transitions across classifications after the
final exam is taken. If grade incentives matter, these transitions should be asymmetric,
with students more likely to move from the upper two points of one grade range to
the bottom two points of the next highest range than to go the other way. Thus, the
transition probability in the upper-left italicized cell should be smaller than that in the
lower-left italicized cell. It is, but only by a small amount, and the difference is not
statistically significant.8

The last piece of evidence also concerns grade transitions, this time for those stu-
dents in the second row of the matrix, whose pre-exam average falls in the middle of
a grade range. These transitions should also be asymmetric when students are grade-
motivated, with movements to the lower two points of a grade range, in the left bolded
cell, more frequent than movements to the highest two points, in the right bolded cell.
But, in the data, students are as likely to move up as to move down. Final course

8 A small number of these transitions involve movements in the “right” direction for the “wrong” reasons:
for example, a student with a 78.2 average moves down to a 71.4 after a terrible final exam. Accounting for
these, the transition probabilities become even more similar.
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averages and their pre-/post-exam change exhibit no evidence of threshold-motivated
study effort.

5.2 Pooled results: exam scores

Alternatively, this effort could be revealed by unusually strong final exam scores
for those students near the thresholds that separate letter grades. Testing for this in
the pooled data is complicated by the fact that exam difficulty and the trend relation
between the pre-exam average and the final exam score both differ by instructor. There-
fore, we first estimated Eq. (1) by instructor (the results can be seen in the Appendix),
and calculated the deviation of the exam score from trend, F–F̂, for each student.
These deviations were then pooled across all instructors, ordered by the pre-exam
average, P, and smoothed with a loess smoother. The results, the pooled equivalent of
ĝ(P)—β̂ P − γ̂ P2, approximate the effects of strategic effort on exam scores, and are
presented in the bottom graph in Fig. 3.

Strategic, grade-motivated study behavior should generate positive score devia-
tions located slightly below the ten-point thresholds separating letter grades. This is
not observed. Estimated deviations in mean exam scores are invariably small (around
1 percentage point), insignificant, and located in the “wrong” places. The peak effort
property fails wholly. So do the others. Perturbations in exam scores do not rise faster
than they fall, as the sawtooth property predicts, and their slope occasionally drops
below negative one, contradicting the stair step property.

5.3 Instructor-specific results

All this evidence suggests the absence of extrinsically, grade-motivated final exam
study effort. These findings are confirmed in instructor-specific tests. The estimation
results are presented in the Appendix, where a results portfolio for each instructor
shows (1) the distribution of final averages, (2) their pre-/post-exam transition, (3)
mean final exam performance conditional on the pre-exam average, ĝ(P), and (4) the
deviation of that performance from trend, ĝ(P)—β̂ P − γ̂ P2. These last two items are
the empirical analogs of the bottom and top graphs in Fig. 2, respectively.

Three of these four elements were also shown in Fig. 3, for the pooled data, and
the instructor-specific results have the same features. There is virtually no evidence
of bunching near the grade thresholds, or of asymmetric transitions in final course
averages after taking the final exam; perturbations in exam grades are small, insignif-
icant, and inconsistent with the properties in Section 3. Formal tests of all relevant
null hypotheses, five tests for each of four instructors, are found in the center panel
of Table 2. Of twenty p values, one is below 0.05, three are below 0.10, and four are
below 0.20, roughly as predicted by chance. Even the elusive p > 0.9 (DeLong and
Lang 1992) is well-represented.

The remaining element, presented third in each results portfolio, shows the mean
predicted exam score and, in addition, two other sets of predicted exam scores: the
25th and 75th percentiles. These can be interpreted as estimates for the least grade-
motivated and most grade-motivated students (conditional on the pre-exam average).
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Table 2 Summary of formal hypothesis tests (p values)

Caliper test: final
averages

Caliper test:
transition
rates

Nonparam.
regression:
exam score
perturbation

Parametric
regression: exam
score

Null hypotheses
(distribution of
test statistic) →

1. The proportion
of students in
the lower range
does not exceed
0.2 (z)

1. The proportion
of students
moving from the
upper range to
the lower range
equals that
going the other
way (z)

In the terminology
of Eqs. (1) and
(2), the exam
score
perturbation,
g(P)—β P—
γ P2, is identical
to 0 (χ2)

Coefficients on
dummies
measuring the
distance of the
pre-exam
average from the
threshold are
zero

2. The proportions
of students in the
lower, middle,
and upper
ranges are 0.2,
0.6, and 0.2 (χ2)

2. The proportion
of students in
the middle range
moving to the
lower range is
no larger than
that moving to
the upper range
(z)

1. Ordinary least
squares (F)

2. Least absolute
distance–likeli-
hood ratio test
(Wald test is
similar) (χ2)

Instructor ↓
Instructor 1 0.189 0.229 0.730 0.821

0.778 0.688 0.509

Instructor 2 0.673 0.222 0.738 0.499

0.939 0.845 0.263

Instructor 3 0.435 0.054 0.086 0.723

0.997 0.784 0.925

Instructor 4 0.795 0.983 0.269 0.339

0.569 0.046 0.986

Instructor X (from
Oettinger 2002)

Parametric test:
p = 0.01 at
most

– – 0.122
0.047

If only the latter respond to threshold grade incentives, we should observe positive
deviations in exam performance at the 75th percentile, located near each grade thresh-
old, even if we don’t observe such deviations in the mean. There is no evidence of this,
however. These incentives are impotent across the full range of student motivation.

5.4 Comparison

Table 2 also presents results from a parametric specification introduced by Oettinger
(2002), which includes a trinomial in the pre-exam average and four interval dummies
for the absolute pre-exam distance from the closest grade threshold, in percentage
points, [1,2), [2,3), [3,4), and [4,5), with [0,1) being the omitted category. The joint
significance of these dummies is taken to imply the existence of strategic effort.
(Our theory implies those individuals above the threshold behave differently
from those below it, suggesting an appropriate change in specification, and places
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restrictions on the relative coefficient magnitudes. Neither is imposed here, however,
to maintain comparability with Oettinger.) For each instructor these dummies are
jointly insignificant, reinforcing our nonparametric estimates.

Oettinger estimates this model on grades from a micro principles class and finds that
strategic effort exists, on the basis of these joint significance tests and some clustering
of students’ final averages just above the grade thresholds. Still, threshold effects on
final exam performance are modest: 1 percentage point on average and 3 percentage
points at most. Oettinger’s data, compared to ours, are somewhat more favorable to
a positive result: the final exam, 40 % of the course average, counts more than most
exams in our data. Such modest effects under stronger grade incentives do not conflict
too much with our findings, and suggest that the effect of grade incentives on learning is
small under more favorable circumstances and nil under less favorable circumstances.

6 Interpretations

Our null finding is, in effect, reduced form: it tells us that threshold grade incentives
do not affect exam performance, but does not tell us why. It is possible that extra study
does not improve exam performance, but recent work suggests otherwise (Farkas and
Hotchkiss 1989; Eren and Henderson 2008; Stinebrickner and Stinebrickner 2008;
DeFraja et al. 2010). Perhaps students simply do not respond to such incentives, for
the reasons given by educational psychologists or other reasons. Or perhaps the incen-
tive is functionally effete–too weak or amorphous to be effective. Three supplementary
tests, which we now present, undermine this last interpretation.

6.1 Marginality

One possibility is that modest improvements in students’ final exam scores do not
have a palpable chance of changing their final letter grades. Then the incentive is not
meaningful enough to have a significant effect. This explanation can be ruled out.
Table 1 reports the number of each instructor’s “marginal students,” whose final letter
grade would change if their final exam score was raised or lowered by five points. On
average, fully one-quarter of students fall into this category.

Furthermore, this marginality varies as expected, being greatest for those students
whose pre-exam average falls near a grade threshold, at least for Instructors 1, 3, and 4.
(We could not determine why Instructor 2 did not satisfy this condition.) Across these
three instructors, the fraction of borderline students (whose pre-exam average ended
in eight or nine) that were marginal was 27, 28, and 30 %. In contrast, the fraction
of non-borderline students (whose pre-exam average ended in four or five) that were
marginal was 10, 20, and 14 %. By this accounting, the expected returns to study effort
vary between borderline and non-borderline students by about a factor of two.

6.2 Magnitude of the incentive

An alternative explanation is that college grades just aren’t that important. We believe
this is unlikely. College grades do matter to employers (Chia and Miller 2008; Grant
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2007; Wise 1975), and the monetary returns to additional study effort, as implied by
prior research, are substantial.

Jones and Jackson (1990) estimates indicate that a one letter-grade improvement in
one college course raises wages by .23 %. A very similar estimate obtains by compar-
ing the effect of study effort on GPA, from Stinebrickner and Stinebrickner (2008),
with the effect of effort on wages, from Babcock and Marks (2010). For the average
college graduate, this improvement is worth more than $100 per year, and even a con-
servative estimate of net present value would exceed $1,000. The marginality results
above indicate that a ten-point increase in the final exam score would increase the
probability of getting the higher course grade by about 15 percentage points, so the
expected returns to this exam score improvement are at least $150. This would seem
to be worth the investment in study effort required to achieve this increase in the exam
score.

Furthermore, incentive effects are absent even at the pass/fail border. Because of
the large financial and time costs of repeating a class, it is very valuable to receive
a D instead of an F. (Each class studied in this paper is required for and dominated
by business majors, so, for most students, the unattractive alternative to repeating the
class is changing one’s major. In each class, also, a grade of D is sufficient for the
major, though it must be offset by a higher grade elsewhere.) Yet a careful review of
the results portfolios in the Appendix reveals no significant evidence of unexpectedly
strong exam performance by students on the cusp of passing the class.

6.3 Awareness

A final possibility is that students simply don’t recognize when they are near a grade
threshold, though this calculation is easily made given the formulae on the course syl-
labi. Refuting this possibility requires a falsification test—finding another behavior
that does exhibit patterns consistent with threshold incentive effects.

Such a test is possible because our final instructor, Instructor 5, allows students to
drop their lowest test, including the final exam. This provides additional leverage: we
can analyze the exam-taking decision first, and then the conditional exam score sec-
ond. These results are presented in an abbreviated results portfolio in Fig. 4. The top
graph illustrates the probability of taking the final exam, estimated semiparametrically
as before, as a function of the pre-exam course average (with semester dummies and
a dummy for missing a previous test as controls). This graph, in contrast to the oth-
ers, exhibits dramatic variation. It clearly establishes the diminishing marginal value
of successively higher grades—moving from an F to a D is valued much more than
moving from a B to an A. It also indicates that students think incrementally about the
exam-taking decision: within each grade range, exam-taking steadily increases as one
approaches the grade threshold. (These thresholds are shifted left by about 3 percentage
points, because this instructor rounds up generously. The thresholds are known by stu-
dents prior to deciding whether to take the final exam.) This is implied by the stair step
property, which asserts that exam takers’ post-effort passing probabilities continuously
increase as the pre-exam average approaches the threshold. Furthermore, for two of
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Fig. 4 Abbreviated results portfolio: Instructor 5

the three thresholds in question, the most rapid rise in exam-taking probabilities occurs
as one gets reasonably close to the threshold, consistent with the sawtooth property.

The other graph in this figure relates the mean exam score to the pre-exam average
for the subset of students that take the final exam (over the limited grade range for
which we have sufficient observations), just as in the Appendix. This graph resembles
its compatriots–no threshold effect is observed, except perhaps for those just shy of
the C/D border. Exam-taking responds to grade incentives, but not exam performance.
This indicates that our findings are not explained by students’ ignorance of the potential
grade benefits of studying harder for the final exam.
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7 Conclusions

Though the threshold grade incentives studied here are economically meaningful, they
do not inspire the students in our data to strategically raise their exam scores when
their grades are most likely to benefit, even when it means the difference between
passing and failing. We look to subsequent research to clarify whether this conclusion
generalizes to other student populations.

A corollary of our findings is that the A–F grading system has no beneficial incen-
tive or informational properties when criterion-referenced grading is used. (Dubey and
Geanakoplos 2010, show that threshold grading can have beneficial properties when
norm-referenced grading is used, but argue for the superiority of a criterion-referenced
system.) These two properties would tend to go hand in hand. Highly grade-motivated
students would tend to cluster just above their preferred threshold, reducing the within-
grade spread in performance and making the course grade a good indicator of student
achievement in that class. This does not happen in the absence of such motivation. This
finding is consistent with our historical review, which found no evidence that threshold
grading systems were adopted because they were informationally or motivationally
superior. Moving the other direction, to a less “lumpy” plus/minus grading system,
improves the informational content of grades, but only marginally (Grant 2007).

Policy-wise, our results sound a note of caution about student incentives. Positive
results have been reported from several recent interventions designed to motivate stu-
dents with substantial, direct monetary rewards, ranging from several hundred to a
few thousand dollars (Angrist et al. 2009; Fryer 2010; Jackson 2010). It is probably
impractical to implement these too broadly, however, because of the costs involved.
Our work indicate that the more modest, yet economically meaningful, indirect rewards
provided by grades do not motivate as effectively. In a way, this lack of response is
a smaller-scale version of a larger, decades-long problem in the US labor market:
the failure, at least among males, for educational achievement to increase despite a
massive rise in the returns to schooling (Heckman 2008; Rosin 2010).

Our results also inform an incipient literature on the design of optimal grading prac-
tices (Dubey and Geanakoplos 2010; Zubrickas 2011), by emphasizing a functional
distinction between the effects of incentives on algorithmic tasks and on heuristic
tasks. This theme, too, is beginning to appear in the literature, in the work of Fryer
(2010) discussed above, and in that of Swinton (2010), who finds positive effects of
a grading system that was expressly designed to motivate effort both algorithmically
and heuristically.

While most policy attention has focused on incentives for teachers or schools, the
joint nature of educational production requires that students also be appropriately
motivated. This paper’s results indicate that designing systems to best accomplish this
task represents a formidable challenge for researchers, policymakers, and educators.
The magnitude of the incentive, the types of tasks it pertains to, and the presence of
intrinsic as well as extrinsic motivation should all be considered when designing such
a system.
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Fig. A1 Results portfolio: Instructor 1
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Fig. A1 contiuned
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Fig. A2 Results portfolio: Instructor 2
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Fig. A2 contiuned
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Fig. A3 Results portfolio: Instructor 3
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Fig. A3 contiuned

123



Grades as incentives 1589

TRANSITION MATRIX 

45 

(0.30) 

67 

(0.45) 

36 

(0.24)

148 

(0.21) 

87 

(0.21)

266 

(0.64) 

65 

(0.16)

418 

(0.59) 

19 

(0.14)

71 

(0.51) 

48 

(0.35) 

138 

(0.20) 

151

(0.21)

404 

(0.57) 

149

(0.21)

704 

(1.00) 

Fig. A4 Results portfolio: Instructor 4
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